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Overview

From mind to AI to NN to multi-level phenomics.

Part I:    Brain and ML inspirations.

Brain  Mind relations, phenomics. 

Part II: Neurodynamics. 

Brain simulations at different levels.  

Part III: Fingerprints of mental activity. 

Neurodynamics on real brain networks. 

Past, present, future overview. 

2018 OHBM Paris/Singapore brain hackathons
overlap with our school … 



Center for Modern 
Interdisciplinary Technologies

Why am I 
interested in this? 

Bio + Neuro + 
Cog Sci + Physics =>

NeuroCognitive Lab.

Other labs: molecular 
biology, chemical 
analytics, nanotech 
and electronics. 

Main theme: maximizing human potential. 
Goal: understanding brain-mind relations, with a lot of help from computational 
modeling and neuroimaging; pushing the limits of brain plasticity.   
Big challenge! Funding: national/EU grants. 



My group of neuro-cog-fanatics



NeuroCog Lab

10 units, diverse projects. 

1. BabyLab – infant EEG, phonematic hearing, working memory

2. NeuroInfo Unit – brain signal analysis, simulations of brain functions

3. fMRI Unit – neuroimaging projects, neuroplasticity, network science

4. EEG Lab – biofeedback, HRV, creativity

5. GameLab – therapeutic games, dyscalculia, autism, gaze interaction

6. Cognitive Video Processing unit – neurorehabilitation

7. MoveLab – analysis of movement, accelerometry

8. MedLab – pain research, medical aspects

9. InterDoctor – coma patients

10. EyeTracking unit – humans and animals

Machine Learning: see A few machine learning algorithms worth further development. 
Many good unfinished -;) ideas in Machine Learning. 
INCF Poland node  in Toruń (2017). ICNF 2019 Congress in Warsaw/Toruń?  



CMIT: scanner GE Discovery MR750 3T



In search of the sources 
of brain's cognitive activity

Project „Symfonia”, NCN, Kraków, 18 July 2016

Looking for a postdock (5/2018)!



Part I: Brain and ML inspirations

From mind to AI to NN to multi-level phenomics.

What do we want to achieve?

Understanding brains and minds, relations:  
Environment  Brain  Mind

High-level description, simple, verbalized
=> cognitive architectures.

Brain, Mind => NN principles, architectures. 

Duch, W. (1996). Computational physics of the mind. 
Computer Physics Communications, 97(1), 136–153.

Editor: … We hope our readers will find inspiration in these more unusual 
contributions, such as that of Duch on "Computational Physics of the Mind".

Now „Physics of Life Reviews” has special issue on the physics of mind . 



Goals & levels of understanding

Full understanding of all aspects of cognition/behavior - too difficult?  
RIKEN BSI: understand, maintain, develop, create brains. 

• Create artificial intelligence => AI, cognitive informatics, brain-inspired. 

• Understand cognitive/affective functions, network level. 

• Understand details of brain functions: genetic, cellular, neural level. 

• Cure and support healthy brain …  

AI has focused on intelligent behavior: problem solving, thinking, knowledge 
representation, searching at symbolic level. 

IBM: Cognitive informatics, Watson technologies.   

WD:  Neurocognitive Informatics manifesto (2009). 

AI based on computing with percepts, patterns, not just symbols. 

AI-NN-ML-SC-PR communities may one day join in problem-oriented, 
not method oriented, large-scale projects.   



Phenomics



Phenomics

Phenomics is the branch of science concerned 
with identification and description of measurable
physical, biochemical and psychological traits of organisms. 
Genom, proteom, phenom, interactom, exposome, virusom … omics.org has a 
list of over 400 various … omics. 

Human Phenome Project, since 2003.
Human Epigenome Project, since 2003.
Human Connectome Project, since 2009.
Developing Human Connectome Project,  UK  2013

Consortium for Neuropsychiatric Phenomics, since 2008 investigates 
phenotypes of people suffering from serious mental disorders at all possible 
levels. 

Can neurocognitive phenomics be developed to understand general behavior 
of people? At which level? That depends on questions asked. 



Phenomics: levels in space and time



Space/time scales

Spatiotemporal resolution:

• spatial scale:  10 orders of magnitude, 
from 10-10 m to 1 m. 

• temporal scale: 10 or more orders of 
magnitude, from 10-10 s to 1 s.

Architecture: 

• hierarchical and modular

• ordered in large scale, chaotic  in small; 

• specific projections: interacting regions 
wired to each other;

• diffused: regions interact through 
hormones and neurotransmitters; 

• functional: 
subnetworks dedicated to specific tasks.

10-4 m  Neurons 10-3 s 

10-6 m Synapses 10-6 s

10-10 m Molecules  10-12 s 

10-3 m Microcircuits 10-2 s

10-2 m Maps 10-1 s

0.1 m Brain systems  1 s

CNS/ANS/PNS 
1 m, 0.1-10 s

10-8 m Ion channel 10-8 s



From Genes to Neurons

Genes => Proteins => receptors, ion channels, synapses 
=> neuron properties, networks, neurodynamics 

=> cognitive phenotypes, abnormal behavior, syndromes.



From Neurons to Behavior

Genes => Proteins => receptors, ion channels, synapses 
=> neuron properties, networks 

=> neurodynamics => cognitive phenotypes, abnormal behavior!



Neuropsychiatric
Phenomics in 6 Levels

According to

The Consortium for Neuropsychiatric 

Phenomics (CNP), 2008

http://www.phenomics.ucla.edu

From genes to molecules to neurons and 

their systems to tasks, cognitive 

subsystems and syndromes. 

Neurons and networks are right in the 

middle of this hierarchy.



NIMH RDoC Matrix for deregulation of large brain systems.

Instead of classification of mental disease by symptoms use Research Domain
Criteria (RDoC) based on multi-level neuropsychiatric phenomics.

1. Negative Valence Systems, primarily responsible for responses to 
aversive situations or context, such as fear, anxiety, and loss.

2. Positive Valence Systems are primarily responsible for responses to 
positive motivational situations or contexts, such as reward seeking, 
consummatory behavior, and reward/habit learning.

3. Cognitive Systems are responsible for various cognitive processes.

4. Social Processes Systems mediate responses in interpersonal settings of 
various types, including perception and interpretation of others’ actions.

5. Arousal/Regulatory Systems are responsible for generating activation of 
neural systems as appropriate for various contexts, providing appropriate 
homeostatic regulation of such systems as energy balance and sleep.

Still in poor shape -;) 
Report: Behavioral Assessment Methods for RDoC Constructs, NIMH 2016



RDoC Matrix for „cognitive domain”



Strategy for Phenomics Research

The Consortium for Neuropsychiatric Phenomics: 
research should provide bridges between all levels, 
one at a time, from environment to syndromes.

Strategy: identify biophysical parameters of neurons 
required for normal neural network functions and leading 
to abnormal cognitive phenotypes, symptoms and syndromes. 

Create models of cognitive function that may reflect some of the symptoms 
of the disease, ex. problems with attention, relating them to model 
biophysical properties of neurons.

Result: mental events at the network level are linked to neurodynamics and it 
depends on the lower-level neural properties. 
Ex: why drugs that stimulate the brain help in ADHD case? Relation of 
ASD/ADHD symptoms to neural accommodation. 

Neuropsychiatric perspective. 



RDoC networks
aMPFC=anterior medial PFC 
AG=angular gyrus. PCC=posterior 
cingulate cortex; dACC=dorsal 
anterior CC; aI=anterior insula. 
TP=temporal pole. 
SLEA=sublenticular extended 
amygdala. 
LPFC=lateral PFC, M=medial 
v=ventral, ms=medial superior, 
vM =ventromedial, 
aIPL=anterior inferior parietal 
lobule. 

OFC=orbitofrontal cortex. 
ACC=anterior cingulate cortex. 
DLPFC=dorsolateral 
PCG=precentral gyrus. 
DPC=dorsal parietal cortex.



Neurocognitive Phenomics

Phenotypes may be described at 
many levels. Here from top down 
we have learning/education, 
psychiatry & psychology,

neurophysiology, 
neural networks, 

biology & neurobiology, 

biophysics, biochemistry &  
bioinformatics. 

Neurocognitive phenomics is even 
greater challenge than 
neuropsychiatric phenomics. 

Effects are more subtle but this is 
the only way to understand fully 
human/animal behavior. Genes, proteins, 

epigenetics

Signaling pathways

Synapses, neurons 
& glia cells 

Neural networks

Tasks, reactions

Cognition

Learning styles

Many types of 
neurons

Neurotransmitters 
& modulators

Genes & proteins, 
building blocks

Specialized brain 
areas, minicolumns

Sensory & motor 
activity, N-back 
… 

Memory types,
attention … 

Learning styles, 
strategies



Geometric model of mind
Brain  Psyche

Objective  Subjective

Neurodynamics: bioelectrical activity of the 
brain, neural activity measured using 
EEG, MEG, NIRS-OT, PET, fMRI, other techniques.

Mapping S(M)S(B)  but how do we 
describe the state of mind? 

Verbal description is not sufficient. 
A space with dimensions that measure 
different aspects of experience is needed. 

Mental states, movement of thoughts
 trajectories in psychological spaces.  

Problem: good phenomenology. We are 
not able to describe our mental states. 

Hurlburt & Schwitzgabel, Describing Inner Experience? MIT Press 2007



AI/NN inspirations from
mind/brain



AI/DNN Milestones
1995 – Chinook wins 6:0 in checkers 

1997 – Deep Blue wins with Kasparov in chess

2011 – IBM Watson wins in Jeopardy. 

2015 – robotic lab + AI software discovers genetic 
and signal pathways regenerating planaria. 

2016 – Google AlphaGo wins with world champion 
Lee Sedol 4:1, and AlphaGoZero beats it 100:0

2017 – Libratus (CM) wins in professional poker   
OpenAI wins in Dota 2 with pro player.  



Mind in AI

AI/CI simple definition: 

branch of science that tries to solve problems for which there are no effective 
algorithms. 

AI – focused on higher cognitive functions; CI includes sensory pattern recognition

Allen Newell, Unified Theories of Cognition (1990): 
Mind is a control system that determines behavior of organism interacting with 
complex environment.  

John Laird: mind is a functional entity that can think. 

Laird JE, Lebiere C, & Rosenbloom, PS (2017). A Standard Model of the Mind: 
Toward a Common Computational Framework across Artificial Intelligence, 
Cognitive Science, Neuroscience, and Robotics. AI Magazine, 38, 13–26. 

No reference to brains, minds may be implemented in many ways. 



A Standard Model of the Mind

Laird JE, Lebiere C, & Rosenbloom, PS (2017). A Standard Model of the Mind: 
Toward a Common Computational Framework across Artificial Intelligence, 
Cognitive Science, Neuroscience, and Robotics. AI Magazine, 38, 13–26. 

Laird: A mind is a functional entity that can think. 

Newell: Mind is a control system that determines behavior of organism 
interacting with complex environment.  

Cognitive informatics 
Neurocognitive Informatics

(Deep Mind, OpenAI).

AI-NN-ML-SC-PR 
communities will finally 
join in problem-oriented, 
not method oriented, 
large-scale projects.   



Cognitive architectures

• CA frequently created to model human performance in 
multimodal multiple task situations, rather than AGI.

• Newell, Unified Theories of Cognition (1990), 12 criteria for CS: behavioral: 
adaptive, dynamic, flexible; development, evolution, learning, knowledge 
integration, vast knowledge base, natural language, real-time performance, 
and brain realization.

 

 Symbolic      Emergent  Hybrid 

 Cognitive architectures 

     Memory 

 Rule-based memory 

   Learning 

 Inductive learning 



    Memory 

 Globalist  memory 



       Learning 

 Associative learning 



Memory 

 Localist-distributed 



              Learning 

 Bottom-up learning 





DREAM top-level architecture

Natural input 
modules

Cognitive 
functions

Affective
functions

Web/text/
databases interface

Behavior 
control

Control of 
devices

Talking 
head

Text to 
speechNLP

functions

Specialized
agents

DREAM project (2003), focused on perception (visual, auditory, text 
inputs), cognitive functions (reasoning based on perceptions), natural 
language communication in well defined contexts, real time control of the 
simulated/physical head. Now Amazon, Google, Apple do it …  



A roadmap to 
human level intelligence 

workshop organized by: 

Włodzisław Duch (Google: W. Duch)  
Department of Informatics, Nicolaus Copernicus University, Torun, Poland 
& School of Computer Engineering, Nanyang Technological Uni, Singapore

Nikola Kasabov (http://www.kedri.info)  
KEDRI, Auckland, New Zealand

James Anderson, Paul Allopenna, Robert Hecht-Nielsen, Andrew Coward, 
Alexei Samsonovich, Giorgio Ascoli, Kenneth De Jong, Ben Goertzel

WCCI’2006, Vancouver, , British Columbia, Canada, July 17, 2006



Steps Toward an AGI Roadmap

Artificial General Intelligence (AGI, 2007 Memphis): 
architectures that can solve many problems and 
transfer knowledge between the tasks. 

Roadmaps: 
• A Ten Year Roadmap to Machines with Common Sense 

(Push Singh, Marvin Minsky, 2002)
• Euron (EU Robotics) Research Roadmap (2004)
• Neuro-IT Roadmap (EU, A. Knoll, M de Kamps, 2006)

Challenges: Word games of increasing complexity: 
• 20Q is the simplest, only object description.
• Yes/No game to understand situation.
• Logical entailment competitions.

Panel with J. Laird, S. Franklin, B. Goertzel, J. Bell
Conference series, AGI journal, AGI movement.



Newer Initiatives

IEEE Computational Intelligence Society Task Force (J. Mandziuk & W. Duch), 
CI for Human-like Intelligence (J. Mandziuk & W. Duch), 2013-18

Brain-Mind Institute School (since 2012), International Conference on Brain-Mind 
(ICBM) and Brain-Mind Magazine (Juyang Weng, Michigan SU).

AGI: conference, Journal of Artificial General Intelligence comments on Cognitive 
Architectures and Autonomy: A Comparative Review (special issue, 
eds. Tan A-H, Franklin S, Duch W). 

BICA: Annual International Conf on Biologically Inspired Cognitive Architectures, 
3rd Annual Meeting of the BICA Society, Palermo, Italy, 31.10- 3.11.2012

Duch W, Oentaryo R.J, Pasquier M, Cognitive architectures: where do we go from 
here? 2008



Attention-Based Artificial Cognitive Control 
Understanding System (ABACCUS)

Large EU integrated project (2005) with 9 participants, later FET 
Flagship candidate (but never started): 

• King’s College London (John G. Taylor, coordinator), UK 

• Centre for Brain & Cognitive Development, Berkbeck College, University of 
London, UK

• Cognition and Brain Sciences Unit, Medical Research Council, UK

• Robotics and Embedded Systems, Technical University of Munich, G

• Institute of Neurophysiology and Pathophysiology, Universitätsklinikum
Hamburg-Eppendorf, G

• Institute of Computer Science, Foundation for Research and Technology –
Hellas, Heraklion, Crete, GR

• National Center for Scientific Research “Demokritos”, Athens, GR

• Dip. di Informatica, Sistemistica, Telematica, Universita di Genova, I

• Dep. of Informatics, Nicolaus Copernicus University, Torun, PL



Mind/brain inspirations for 
Machine Learning



ML: RBF-discovering the wheel ML: RBF-discovering the wheel 

Early ideas, 1990-95 - before the Internet and repositories of papers … 

RBF rediscovery (1993): extract high-level neural processing principles.
What should artificial neural units do? Discriminate (MLP), compute probability 
density (RBF) or estimate similarity (SBM)? Depends on the point of view … 

Duch W (1994) Floating Gaussian Mapping: a new model of adaptive systems. 
Neural Network World 4:645-654

But … approximation theory has been developed in 1950-60. 
Network implementation led to models of probability density: 

D.S. Broomhead & D. Lowe (1988), Multivariable functional interpolation and 
adaptive networks. Complex Systems 2: 321–355.
T. Poggio and F. Girosi, Networks for approximation and learning. 
Proc. IEEE 78(9), 1484-1487 (1990).
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Object recognition
Object recognition theory, S. Edelman (1997) 

Second-order similarity in low-dimensional (<300) space is sufficient. 

Population of columns as weak classifiers working in chorus - stacking. 

Exemplars create fuzzy 
prototypes, solving the 
problem in theory of 
categorization.  
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Object recognition
Object recognition theory, S. Edelman (1997) 

Second-order similarity in low-dimensional (<300) space is sufficient. 

Population of columns as weak classifiers working in chorus - stacking. 

Exemplars create fuzzy 
prototypes, solving the 
problem in theory of 
categorization.  



FSM - neurofuzzy systems

Feature Space Mapping (FSM) constructive neurofuzzy
system.  Neural adaptation, estimation of probability 
density distribution (PDF) using single hidden layer 
network (RBF-like), with nodes realizing separable basis 
functions (SBF networks):
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i j
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
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i

RBF X P W X P 

Model of mental processes–SBF nodes representing attractors, mental events. 

Separable functions: interpretation based on fuzzy rules, RBF – just intuition.  

Implementation: resource allocation constructive FSM network, stable.

Duch W, Diercksen GHF (1995) Feature Space Mapping as a universal adaptive 
system. Computer Physics Communications 87: 341-371



P-rulesP-rules

Euclidean distance leads to a Gaussian fuzzy membership  functions + product 
as T-norm. In this case SBF = RBF. 

Manhattan function => m(X;P)=exp{|X-P|}

Various distance functions lead to different MF; P-rules are more than fuzzy! 
Ex. data-dependent probabilistic distance functions for symbolic data:
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Density modellingDensity modelling

But … E.M. Pothos, The Rules versus Similarity distinction. Behavioral and Brain 
Sciences, Vol. 28 (1): 1-14, 2005

Problem is solved by networks implementing P-rules. 

Duch W (1997) Platonic model of mind as an approximation to neurodynamics.
In: Brain-like computing and intelligent information systems, ed. S-i. Amari, N. 
Kasabov. Springer, 1997, chap. 20, pp. 491-512

Duch, W. Mind as a shadow of neurodynamics. Physics of Life Reviews, special 
issue “Physics of mind”, Ed. F. Schoeller (submitted, 5/2018).  

http://www.is.umk.pl/~duch/projects/projects/platonic.html

More on brain inspirations for ML in my presentations here.



What feedforward NN really do?

Vector mappings from the input space to hidden space(s), and finally 
to the output space where data should be separable. 

Hidden-Output mapping done usually by perceptrons. 
Brain performs many transformations, Eye=>LGN=>V1=>V2…=>V5=>IT 

T = {Xi} training data, N-dimensional.  

H = {hj(X
i)} T image in the hidden space, j =1 .. NH-dim.

Y = {yk{h(Xi)} T image in the output space, k =1 .. NC-dim.

NN goal: scatterograms of  H, the image of T in the hidden space 

should be linearly separable and stable; internal representations will 
determine network generalization capabilities and other properties.

Is this a good goal? Can it be easily achieved? 
“Universal approximator” theorem is not helpful.  



Discovering the wheel - reverseDiscovering the wheel - reverse
Although we have Internet some people have yet to rediscover my ideas …

• Duch W (1996) Computational physics of the mind. Computer Physics 
Communication 97: 136-15

• Perlovsky, L. I. (2016). Physics of the Mind. Frontiers in Systems 
Neuroscience, 10.  fnsys.2016.00084

o Duch W, Diercksen GHF (1995) Feature Space Mapping as a universal 
adaptive system. Computer Physics Comm. 87: 341-371

o Perlovsky LI. Neural networks and intellect: Using model based concepts. 
New York: Oxford University Press; 2001.

Same with meta-learning, prototype-based learning, transfer functions, 
creativity and intuition, and a few other ideas. 

• Duch W (2007), Intuition, Insight, Imagination and Creativity. IEEE 
Computational Intelligence Magazine 2(3), 40-52

• Cognitive informatics: HITs, DREAMs & Perfect Babies. A*STAR Cognitive 
Science Symposium, Singapore, September 26, 2005 



Similarity-based framework

Search for good models requires a frameworks to build and evaluate them.  

p(Ci|X;M) posterior classification probability or y(X;M) approximators,

models M are parameterized in increasingly sophisticated way. 

Similarity-Based Learning (SBL) or S-B Methods provide such framework. 

(Dis)similarity: 

• more general than feature-based description, 

• no need for vector spaces (enables structured objects), 

• more general than fuzzy approach (F-rules are reduced to P-rules), 

• includes nearest neighbor algorithms, MLPs, RBFs, separable function 
networks, SVMs, kernel methods, specialized kernels, and many others! 

A systematic search (greedy, beam), or evolutionary search in the space of all 
SBL models is used to select optimal combination of parameters & procedures, 
opening different types of optimization channels, to discover appropriate bias 
for a given problem.  Problem => discover appropriate method!

Result: several candidate models are created, already first very limited version 
gave best results in 7 out of 12 Stalog problems. 



Meta-learning in SBL scheme

Accuracy/complexity measures for model selection.
SBL program with many options developed by Karol Grudziński. 

k-NN 67.5/76.6%

+d(x,y); 
Canberra 89.9/90.7%

+ si=(0,0,1,0,1,1); 
71.6/64.4 %

+selection, 
67.5/76.6 %

+k opt; 67.5/76.6%

+d(x,y) + si=(1,0,1,0.6,0.9,1);  
Canberra 74.6/72.9 %

+d(x,y) + selection; 
Canberra 89.9/90.7 %





Prototypes for images

Stable and 
transparent 
interpretation, 
based on similarity. 

Lazy learning. 

Almost as good as 
deep learning on 
hand written digits 
(NIPS data). 

~ Pandemonium 
architecture, 
Selfridge 1959!

P. Angelov, X. Gu, 
MICE: Multi-layer
Multi-model Images
Classifier. Ensemble,

CYBCONF 2017 



P-rules and intuitive thinkingP-rules and intuitive thinking

Learning from partial observations: 

Ohm’s law V=I×R; Kirhoff’s V=V1+V2.  

Geometric representation of qualitative facts:

+ increasing, 0 constant, - decreasing.

True (I-,V-,R0), (I+,V+,R0), false (I+,V-,R0). 

5 laws: 3 Ohm’s   2 Kirhoff’s laws.

All laws A=B+C, A=B×C , A-1=B-1+C-1, have 
identical geometric interpretation!

13 true, 14 false facts; simple P-space, but 
complex neurodynamics.

Question in qualitative physics (PDP book): 
if R2 increases, R1 and Vt are constant, what will 
happen with current and V1, V2 ?



Intuitive reasoning

5 laws are simultaneously fulfilled, all have the same representation: 

Question: If R2=+, R1=0 and V =0, what can be said about I, V1, V2 ?
Find missing value giving  F(V=0, R, I,V1, V2, R1=0, R2=+) >0
Assume that one of the variable takes value X = +, is it possible? 
Not if F(V=0, R, I,V1, V2, R1=0, R2=+) =0, i.e. one law is not fulfilled.  
If nothing is known 111 consistent combinations out of 2187 (5%) exist. 

5
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Intuitive reasoning, without 
manipulation of symbols. 
Heuristics: select variable giving 
unique answer, like Rt. 
Soft constraints or semi-quantitative 
=> small |F(X)| values. 



Biological inspirations
Cortical columns may learn to respond to stimuli 
with complex logic, resonating in different way.

Liquid state machine (LSM; Maas, Markram 2004) 
– large spiking recurrent neural network, 
randomly connected. 

S(t) => LSM (x,t), spatio-temporal pattern of 
activations, creating separable high dimensional 
projections, perceptrons can handle that.

Simplifications for static data: 

1) Oscillators based on combination of two neurons   s(W.X-b) – s(W.X-b’)
give localized projections  specific resonant states! 
Used in MLP2LN architecture for extraction of logical rules from data.

2) Single hidden layer constructive network based on random projections.



aRPM

aRMP, Almost Random Projection Machine (with Hebbian learning): 

generate random combinations of inputs (line projection) z(X)=W.X, 

find and isolate pure cluster h(X)=G(z(X)); localized kernel on projections,  
estimate relevance of h(X), ex. MI(h(X),C), 
leave only good nodes and continue until each vector activates minimum k 
hidden nodes. 

Count how many nodes vote for each class and plot: no LDA needed! 
Learning – only output biases.  



Goal of learning

If simple topological deformation of decision borders is sufficient linear 
separation is achieved in high dimensional spaces, “flattening” non-
linear decision borders; this is frequently the case in pattern recognition 
problems. RBF/MLP networks with one hidden layer solve the problem.

For complex logic this is not sufficient; networks with localized functions need 
exponentially large number of nodes.

Such situations arise in AI reasoning problems, real perception, object 
recognition, text analysis, bioinformatics ...  

Linear separation is too difficult, set an easier goal. 
Linear separation: projection on 2 half-lines in the kernel space: 
line y=WX, with y<0 for class – and y>0 for class +. 

Simplest extension: separation into k-intervals, or k-separability. 
For parity: find direction W with minimum # of intervals,  y=W.X



What can be learned?What can be learned?

Linearly separable or almost separable problems are relatively simple –
deform planes or add dimensions to make data separable.

How to define “slightly non-separable”, or relatively easy to learn? 
Now we have only separable problems and one vast realm of the rest. 



Neurons learning complex logicNeurons learning complex logic

Boole’an functions are difficult to learn, n bits but 2n nodes => 
combinatorial complexity; similarity is not useful, for parity all neighbors 
are from the wrong class. MLP networks have difficulty to learn functions 
that are highly non-separable.  

Projection on W=(111 ... 111) gives clusters with 0, 1, 2 ... n bits;

solution requires abstract imagination + easy categorization.

Ex. of 2-4D 
parity 
problems.

Neural logic 
can solve it 
without 
counting; 
find a good 
point of view. 



Boolean functionsBoolean functions

n=2, 16 functions, 12 separable, 4 not separable.

n=3, 256 f, 104 separable (41%), 152 not separable.

n=4, 64K=65536, only 1880 separable (3%)

n=5, 4G, but << 1% separable ... bad news! 

Most bioinformatics or neuroimaging data may require n >100. 

Existing methods may learn some non-separable functions, 
but most functions cannot be learned !  

Example: n-bit parity problem; many papers in top journals.
No off-the-shelf systems are able to solve such problems. 

For all parity problems SVM is below base rate! 
Such problems are solved only by special neural architectures or special 
classifiers – if the type of function is known. 

But parity is still trivial ... solved by 
1
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n

i
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Linear separability

SVM visualization of Leukemia microarray data, 

Horizontal axis   x=WX, vertical - orthogonal projection.



Approximate separability

SVM visualization of Heart dataset, overlapping clusters, information in the 
data is insufficient for perfect classification.



Rules

QPC visualization of Monks dataset with simple logical structure, 
two logical rules are needed, or combination of two projections.



Complex distribution

QPC visualization of concentric rings in 2D with strong noise in remaining 2D; 
transform: nearest neighbor solutions, combinations of ellipsoidal densities.



Interval transformation

8-bit parity data: 9-separability is much easier to achieve than full linear 
separability; almost impossible to train MLP on such data.



k-sep learning
Try to find lowest k with good solution (simple methods frequently work):

• Assume k=2 (linear separability), try to find a good solution; 

MSE error criterion

• if k=2 is not sufficient, try k=3; two possibilities are C+,C,C+ and 
C, C+, C this requires only one interval for the middle class;

• if k<4 is not sufficient, try k=4; two possibilities are C+, C, C+, C and C, 
C+, C, C+ this requires one closed and one open interval.

Network solution  to minimization of specific cost function.
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First term = MSE, second penalty for “impure” clusters, third term = reward for 
the large clusters. 

      
2

, ;E y C  
X

W X W X



k-separabilityk-separability

How to learn complex Boolean functions? 

Problems may be classified as 2-separable (linear separability); 
non separable problems may be broken into k-separable, k>2.

Green: sigmoidal neurons 
with threshold, brown –
linear neurons. 
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Neural architecture for 
k=4 intervals, or 
4-separable problems.



Parity n=9Parity n=9

Simple gradient learning; QPC index shown below.



Transformation-based framework

Find simplest model that is suitable for a given data, creating non-sep. that is 
easy to handle: simpler models generalize better, interpretation.

Compose transformations (neural layers), for example: 

• Matching pursuit network for signal decomposition, QPC index.

• PCA network, with each node computing principal component.

• LDA nets, each node computes LDA direction (including FDA).

• ICA network, nodes computing independent components.

• KL, or Kullback-Leibler network with orthogonal or non-orthogonal 
components; max. of mutual information is a special case.  

• c2 and other statistical tests for dependency to aggregate features.

• Factor analysis network, computing common and unique factors.

Evolving Transformation Systems (Goldfarb 1990-2008), giving unified 
paradigm for inductive learning, structural processes as representations.



Heterogeneous systems
Next step: use components from different models. 

Problems requiring different scales (multiresolution).

2-class problems, two situations: 

C1 inside the sphere, C2 outside.

MLP: at least N+1 hyperplanes, O(N2) parameters. 

RBF:  1 Gaussian, O(N) parameters. 

C1 in the corner defined by (1,1 ... 1) hyperplane, C2 outside.

MLP: 1 hyperplane, O(N) parameters. 

RBF:  many Gaussians, O(N2) parameters, poor approx.

Combination: needs both hyperplane and hypersphere! 

Logical rule: IF x1>0 & x2>0  THEN  C1 Else C2

is not represented properly neither by MLP nor RBF!

Different types of functions in one model, first step beyond inspirations from 
single neurons => heterogeneous models are inspired by neural minicolumns, 
more complex information processing.



Support Feature Machines

General principle: complementarity of information processed by parallel 
interacting streams with hierarchical organization (Grossberg, 2000).

Cortical minicolumns provide various features for higher processes.

Create information that is easily used by various ML algorithms: explicitly 
build enhanced space adding more transformations. 

• X , original features
• Z=WX, random linear projections, other projections (PCA< ICA, PP)
• Q = optimized Z using Quality of Projected Clusters or other PP techniques.
• H=[Z1,Z2], intervals containing pure clusters on projections.
• K=K(X,Xi), kernel features.
• HK=[K1,K2], intervals on kernel features

Kernel-based SVM is equivalent to linear SVM in the explicitly constructed
kernel space, enhancing this space leads to improvement of results.
LDA is one option, but many other algorithms benefit from information in 
enhanced feature spaces; best results in various combination X+Z+Q+H+K+HK. 



Unified theories of brain functions
Physics: principle of least action => laws of mechanics: Newtonian, Lagrangian, 
Hamiltonian, and general relativity (Hilbert) equations of motion. 

Artificial Intelligence: search in problem spaces (Newell, Simon).

Cognitive systems: minimization of surprise or prediction errors, active 
inference, self-organization to minimize surprise (sensory), ensure homeostasis, 
select a limited number of internal action states.

Mathematical formulation is based on variational Bayesian methods. 

Behavior = F(Brain State, Sensations). 

Brain State depends on stimuli s and latent internal parameters  of the model 
(agent) m while surprise is measured by entropy: 
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Free energy
We do not know the latent parameters  of the model, but may estimate free 
energy to find the upper bound: 

Free energy principle (Friston: an information theory measure F that bounds 
from above the surprise on sampling some data, given a generative model. 

Maximum a posteriori estimation (MAP estimation) <= EM (expectation-
maximization) algorithm extension from single most probable value of hidden 
parameters to fully Bayesian estimation of an approximation to the 
entire posterior distribution p(|s) of the parameters and latent variables. 

Adaptive systems (animals, brains) resist a natural tendency to disorder. 
Perception optimizes predictions.   Action minimizes prediction errors.  

The free-energy principle (FEP): any self-organizing system that is at 
equilibrium with its environment must minimize its free energy.  

Lester Ingber, Generic mesoscopic neural networks based on statistical 
mechanics of neocortical interactions
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Free energy
The free-energy principle (FEP): any self-organizing system that is at equilibrium 
with its environment must minimize its free energy – predict = active inference.  

Constraints for brain 
architecture: EST, 
Evolutionary Systems Theory 
(Badcock, 2012).

Combination of FEP with EST 
is a candidate for standard 
theory of cognitive systems.

Still only a sketch of a theory.
Can FEP be derived from 
computational neuroscience? 



Hierarchical 
brain structure

Back of the brain – forward 
prediction error.

Front of the brain – backward 
predictions. 

Park H-J, Friston K. 

Structural and functional 
brain networks: from 
connections to cognition. 
Science. 2013;342



Conclusions I

• Cognitive architectures and interesting ML inspirations follow from thinking 
about the brain and neuron functions.

• Goal of learning should be redefined. 

• Simple projections may work as well as backprop MLPs. 

• Similarity-based framework, transformation based learning and support 
feature machines should be used in meta-learning schemes. 

• P-rules solve many problems, are more general than F-rules.

• Intuitive solving of complex problems is possible with simple networks. 

• Practical methods need to be derived from general principles like FEP. 

• With new global AI initiatives everything will be possible!



Next: 
Brain networks.

Space for neurodynamics. 



Thank for 
synchronization 
of your neurons

Google: W. Duch 
=> talks, papers, lectures, Flipboard … 




